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ABSTRACT 

      Timely assessment of integrity of structures after seismic events is crucial for public 

safety and emergency response. This study focuses on assessing the structural damage 

conditions using deep learning methods to detect exposed steel reinforcement in 

concrete buildings and bridges after large earthquakes. Steel bars are typically exposed 

after concrete spalling or large flexural or shear cracks. The amount and distribution of 

exposed steel reinforcement is an indication of structural damage and degradation. To 

automatically detect exposed steel bars, new datasets of images collected after the 2023 

Turkey Earthquakes were labeled to represent a wide variety of damaged concrete 

structures. The proposed method builds upon a deep learning framework, enhanced with 

fine-tuning, data augmentation, and testing on public datasets. An automated 

classification framework is developed that can be used to identify inside/outside buildings 

and structural components. Then, a YOLOv11 (You Only Look Once) model is trained to 

detect cracking and spalling damage and exposed bars. Another YOLO model is fine-

tuned to distinguish different categories of structural damage levels. All these trained 

models are used to create a hybrid framework to automatically and reliably determine 

the damage levels from input images. This research demonstrates that rapid and 

automated damage detection following disasters is achievable across diverse damage 

contexts by utilizing image data collection, annotation, and deep learning approaches. 

Keywords: cracks, spalling, exposed rebars, deep learning, earthquake, structural 

damage detection, damage levels 

1. INTRODUCTION 
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     Large earthquakes can inflict significant damage on buildings and bridges, ranging 
from minor issues to partial or complete collapse. Visual inspection is vital for immediate 
safety assessments and forms the basis for informed decisions on building interventions, 
like repair, demolition, or reconstruction. It also plays a key role in accurately determining 
financial responsibilities among insurers, government agencies, or individual owners.  

Deep learning techniques have demonstrated significant promise in recent years for 
facilitating quick and scalable damage detection. This advancement is built upon 
foundational work, including the development of extensive public image datasets for 
structural damage (Gao and Mosalam, 2018; Yeum et al., 2018) and the effective use of 
deep convolutional neural networks (CNNs) for image-level damage classification (Cha 
et al., 2018; Fan, 2024). More sophisticated studies have used various YOLO versions 
and object detection models like Faster R-CNN to localize multiple damage types 
simultaneously, including exposed rebar, cracks, and spalling (Bai et al., 2021a; Zou et 
al., 2022; Ghosh Mondal et al., 2020). Despite these developments, significant obstacles 
remain (Bai, 2022). First, even human inspectors find it difficult to discern damage levels, 
particularly when there are faint or obscure visual indicators. Second, diverse, well-
annotated datasets representing a range of structural configurations, materials, lighting 
conditions, and damage types are necessary for reliable real-world performance. Third, 
few studies examine the structural significance of multiple damage types simultaneously, 
whereas many examine isolated damage, such as cracks or spalling. 

      This study aims to close these gaps by presenting a strong deep learning framework 
that automatically recognizes and categorizes earthquake-induced damage levels in 
reinforced concrete (RC) structures, with a particular emphasis on crucial damage 
indicators like cracking, spalling, and exposed rebar. The model used in this paper was 
trained using labeled image data from the 2023 Kahramanmaraş Earthquake in Türkiye 
and several benchmark datasets, including PEER Hub ImageNet (ϕ-Net created by Gao 
and Mosalam (2018, 2020)) and publicly available crack-spalling datasets (Bai et al., 
2021a, b). The generalization performance of the model was assessed using separate 
post-earthquake datasets from the 2017 Mexico Earthquake (Purdue University, 2018) 
and the 2017 Pohang Earthquake in South Korea (Sim et al., 2018). This data fusion 
allows us to train and test our models on diverse real-world scenarios and to improve the 
generalization capacity                     

2. METHODOLOGY 

2.1 Data preparation 

Four separate image datasets were used to train and evaluate the proposed 

framework, as summarized in Table 1. These datasets were developed using both 

publicly available resources (e.g., ϕ-Net) and newly collected images from the 2023 

Türkiye Earthquake.  

Table 1 Summary of the image datasets used for training and evaluation. 

Dataset Type 
Image 

Count Resolution Range Purpose Notes 
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Inside/Outside 

Classification 
18,193 

224×224 – 

1080×1440 

Classify indoor 

vs. outdoor 

Based on ϕ-Net + 

Türkiye EQ 

Structural 

Component 

Recognition 

4,939 
224×224 – 

1080×1240 

Identify beams, 

columns, and 

walls 

Subset of ϕ-Net 

Structural 

Damage Level 

Detection 

8,731 1080×1440 

Classify 

damage level 

(0–3) 

Collected from 

Türkiye EQ 

Damage Type 

Detection 
3,064 Varying 

Detect cracks, 

spalling, rebar 

Bounding boxes 

annotated 

manually 

 

2.2 Deep learning models for structural damage classification and detection 

      YOLOv11, one of the latest iterations in the YOLO series by Ultralytics (Jocher and 
Qiu, 2024), marks a substantial leap forward in real-time object detection. The YOLO 
model allows for its application across various tasks: object detection, instance 
segmentation, image classification, pose estimation, and object tracking (Jegham et al., 
2024). 

2.3 Hybrid deep learning framework for post-earthquake damage detection 

      The framework is made up of a fusion logic after cascading YOLOv11-based 
classifiers and detectors. Prior to detecting structural elements and damage types (crack, 
spalling, and rebar), an image must first be classified as either inside or outside of a 
building. Lastly, a hybrid decision mechanism assigns one of four damage levels by 
combining predictions based on models and rules. Rebar validation and environment-
aware filters are integrated into the updated RuleFusion v2, which improves accuracy 
without increasing the model size. Fig. 1 shows the overall workflow. 
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Fig. 1 Workflow of the proposed hybrid framework for post-earthquake building 

damage assessment 

2.4 Rule-based damage levels 

      Initially, a rule-based classifier was created to improve reliability and interpretability. 
Damage is immediately classified as "heavy" if exposed rebar is found. If not, a weighted 
score is determined by counting the number of rebar, spalling, and cracks found as 
shown in Fig. 1. The damage is then categorized as zero, slight, or medium using 
thresholds. This reasoning guarantees consistent and comprehensible results, 
particularly under difficult visual circumstances. 

 

3. RESULTS 

      The proposed hybrid framework was tested on 2017 Pohang Earthquake image (PEI) 
dataset (Sim et al., 2018) and 2017 Mexico City Earthquake image (MEI) dataset 
(Purdue-University, 2018), which include 4,109 and 4,136 high-resolution images 
collected by experts after these two Richter magnitude 5.2 and 7.1 earthquakes struck 
these regions. The model’s overall performance was strong, but because of image quality, 
structural variations, lighting, and more complex context, its quantitative performance on 
the Mexico dataset was somewhat worse. Table 2 presents the accuracy results for 
different fusion and meta-model configurations. On the more difficult MEI dataset, 
however, the meta-model based on logistic regression performed poorly (Test No. 4). 
Consequently, an advanced LightGBM-based (Ke et al., 2017) meta-model was 
introduced, yet it only achieved an accuracy of 41.96% (±1 accuracy: 79.29%), indicating 
dataset-specific difficulties. These numerical insights suggest opportunities for further 
improvement through targeted hyperparameter tuning, feature engineering, or enriched 
training data in future studies. 

 
Table 2 Accuracy comparison of the baseline hybrid model and the meta-model on 
different test datasets. 

Test Dataset Method Model type Accuracy (%) ±1 Accuracy 

1st PEI Final Decision 

(Baseline) 

Rule Fusion v1 61.54 68.32 

2nd PEI Final Decision Rule Fusion v2 71.04 91.92 

3rd PEI Meta-Model Decision Logistic Regression 73.72 92.80 

4th MEI Final Decision Rule Fusion v2+LightGBM 41.96 79.29 

* v2 = v1 + environment-aware noise filtering, ambiguity-aware component bias, and refined 
rebar validation (see Section 2.3) 

      The accuracy of the baseline fusion method on the 2017 PEI dataset was enhanced 
by incorporating a meta-model based on logistic regression, as indicated in Table 2. 
However, due to the previously mentioned dataset-specific complexities, neither Logistic 
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Regression nor an advanced LightGBM meta-model significantly improved performance 
on the more difficult 2017 MEI dataset.  

Table 3 Per-class F1 scores on 2017 PEI dataset 

Metrics Zero Slight Medium Heavy 

F1 Score 0.844 0.384 0.128 0.641 

      Table 3 displays the per-class F1 scores of the top-performing configuration (Meta-
Model Decision with Logistic Regression), which achieved 73.72% exact and 92.80% ±1 
accuracy on the 2017 PEI dataset. The model is more accurate for zero and heavy 
damage classes, but less accurate for medium and slight damage levels. 

4. CONCLUSIONS 

      This study presents a strong hybrid framework that combines deep learning, rule-
based logic, and meta-learning for the precise classification of earthquake-induced 
structural damage. Key findings and contributions are summarized below: 

      (1) The suggested framework facilitates quick and accurate post-disaster evaluations 
by combining object detectors, image classifiers, and a fusion-based decision 
mechanism. 

      (2) The method successfully addressed class imbalance and produced results that 
were easy to understand by achieving high accuracy in identifying zero and heavy 
damage levels. 

      (3) The damage detection model demonstrates limitations in accurately identifying 
finer cracks, despite its success in detecting noticeable damage such as spalling and 
exposed rebar. This is because such damage looks obscured or subtle and is hard to 
discern from background textures. 

      Future research will concentrate on addressing performance limitations on some 
datasets by examining image-aware fusion techniques. The LightGBM or other machine 
learning algorithms will be incorporated into the scene-level embedding for the 
unmanned platforms with cameras. 
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